Atomistic models of megaton processes

Or: Using mass spectrometers as chemical laboratories

 \Rightarrow Reactivity concepts for model systems

Challenges in selective oxidation

 $rac{}$ Methane oxidation $CH_4 + \frac{1}{2}O_2 \rightarrow CH_3OH$

Well-developed, stepwise process $CH_4 \rightarrow \ CO/H_2 \rightarrow CH_3OH$

Only economic in large scale

What about "small" sources?

rightarrow Methane coupling 2 CH₄ + O₂ \rightarrow C₂H₄ + 2 H₂O

Epoxidation

 $C_2H_4 + \frac{1}{2}O_2 \rightarrow c-C_2H_4O$

"atom economic"

Key objectives

Combustion to be avoided!

- Principles of C-H bond activation \Rightarrow basic understanding
- Follow-up reactions \Rightarrow prevention of overoxidation
- Reactivity/selectivity dilemma
- Spin- and stoichiometry problems
- \Rightarrow practical realization
- \Rightarrow re-oxidation with O₂

Selective Activation of Alkanes by Gas-Phase Metal Ions J. Roithová, D. Schröder, *Chem. Rev.* **2010**, *110*, 1170

Overview

- ⇒ I. Principles (Example: BMA process) Ion/molecule reactions in FTICR-MS Kinetics & thermochemistry *ab initio* studies
- ⇒ II. Partial oxidation of methane Mononuclear systems Metal-oxide clusters
- ⇒ III. Epoxidation of olefins Conceptual problem Classical methods and uses of epoxides Contact process
- \Rightarrow IV. Conclusions

I. Measuring procedure - Example: BMA process

BMA: Blausäure aus Methan und Ammoniak [DEGUSSA- and ANDRUSSOW processes]

 $CH_4 + NH_3 \rightarrow HCN + 3H_2$ (endothermic)

Fourier-transform ion cyclotron-resonance (FTICR) mass spectrometry i.e. storage of ions in electromagnetic fields

Procedure

- 1. Ion generation
- 2. Transfer to the ICR cell and isolation
- 3. Thermalization
- 4. Gas pulse for the generation of reactants
- 5. Isolation of the reactant ion
- 6. Reaction with a neutral gas
- 7. Detection and data processing

here: LD/LI of platinum here: 195 Pt⁺ here: collisions with argon here: Pt⁺ + CH₄ \rightarrow PtCH₂⁺ + H₂ here: 195 PtCH₂⁺ here: ammonia here: mass spectra

A. Reaction kinetics

Primary reactions in the $Pt^+/CH_4/NH_3$ system

Pt⁺ + CH₄ → PtCH₂⁺ + H₂ $k_{CH_4} = 8.2 \cdot 10^{-10} \text{ cm}^3 \text{ s}^{-1}$ Pt⁺ + NH₃ → Pt(NH₃)⁺ $k_{NH_3} = 5.0 \cdot 10^{-13} \text{ cm}^3 \text{ s}^{-1}$

 \hat{r} Pt⁺ is selective for methane, S > 99.9% (in UHV)

$$\begin{array}{ll} \text{PtCH}_{2}^{+} + \text{CH}_{4} \rightarrow \text{PtC}_{2}\text{H}_{4}^{+} + \text{H}_{2} & k_{CH_{4}} = 0.9 \cdot 10^{-10} \text{ cm}^{3} \text{ s}^{-1} \\ \text{PtCH}_{2}^{+} + \text{NH}_{3} \rightarrow \text{PtCH} + \text{NH}_{4}^{+} & k_{NH_{3}} = 0.3 \cdot 10^{-10} \text{ cm}^{3} \text{ s}^{-1} \\ \rightarrow \text{PtH} + \text{CH}_{2}\text{NH}_{2}^{+} & k_{NH_{3}} = 4.3 \cdot 10^{-10} \text{ cm}^{3} \text{ s}^{-1} \\ \rightarrow \text{PtCHNH}_{2}^{+} + \text{H}_{2} & k_{NH_{3}} = 1.6 \cdot 10^{-10} \text{ cm}^{3} \text{ s}^{-1} \end{array}$$

 \Rightarrow PtCH₂⁺ is selective for ammonia, $S_{C-N} > 80\%$ (1:1 mixture)

(Angew. Chem. 1994, 106, 1232 & Angew. Chem. 1998, 110, 858)

B. Subsequent reactions

```
Collision-induced dissociation: Dehydrogenation

PtCHNH<sub>2</sub><sup>+</sup> + E \rightarrow PtCNH<sup>+</sup> + H<sub>2</sub> then: PtCNH<sup>+</sup> + E \rightarrow Pt<sup>+</sup> + HCN

similarly: PtCDNH<sub>2</sub><sup>+</sup> \rightarrow PtCNH<sup>+</sup> + HD
```

Formation of aminocarbene complexes

 $\begin{array}{rcl} \mathsf{PtCH}_2^+ + \mathsf{NH}_3 & \to & \mathsf{PtCHNH}_2^+ + \mathsf{H}_2 \\ \mathsf{PtCHNH}_2^+ + & \mathsf{NH}_3 \to & \mathsf{PtC}(\mathsf{NH}_2)_2^+ + \mathsf{H}_2 \\ & & \mathsf{similarly:} & \mathsf{PtCD}_2^+ \to \to & \mathsf{PtC}(\mathsf{NH}_2)_2^+ \end{array}$

Formation of immonium ions $PtCH_2^+ + NH_3 \rightarrow PtH + CH_2NH_2^+$ $CH_2NH_2^+ + NH_3 \rightarrow NH_4^+ + CH_2NH$ cf. *PA*(CH₂NH) = 203.8 kcal/mol vs. *PA*(NH₃) = 204.0 kcal/mol similarly: PtCD₂^+ \rightarrow CD₂NH₂⁺ \rightarrow NH₄⁺

C. Comparison of different metals

 \bigcirc Model reaction: $MCH_2^+ + NH_3 \rightarrow Products$

	k _r /k _c	NH_4^+	CH_2NH_2^+	CH_3NH_2	$MC(H)NH_2^+$	ϕ_{BMA}
$FeCH_2^+$	0.0		no rea	action		0%
CoCH_2^+	0.0		no rea	action		0%
$RhCH_2^+$	0.1			75	25	0%
$TaCH_2^+$	0.5 ^{a,b}			5	65	20%
WCH_2^+	0.1 ^b				100	10%
$OsCH_2^+$	0.2	45			55	20%
$IrCH_2^+$	0.4	60			40	40%
PtCH ₂ ⁺	0.3	5	70		25	100%
$AuCH_2^+$	0.6		100			0%

^a In addition 30% metathesis to TaNH⁺ + CH₄ ^b Pronounced oxide formation with background water

Kinetic control of C–N-coupling

D. Ab initio studies

Density functional theory (B3LYP)

Formation of aminocarbene complexes

(Angew. Chem. 1998, 110, 858)

[©] ACS, Washington, USA

Two separate pathways to HCN (proof in real BMA catalysis in 2004)
 ANDRUSSOW: additional combustion of methane

(J. Am. Chem. Soc. 1999, 121, 10614)

Next step: Reactivity of cluster ions

Cluster source: Laservaporization according to Smalley

Neutral and ionic clusters

- Cooling and aggregation in He-puls
- Fine tuning via pulse sequence, He-pressure, laser power etc.

1. Step: Activation of methane

 $Pt_n^+ + CH_4 \rightarrow Pt_nCH_2^+ + H_2$

Rate constants (in 10⁻¹⁰ cm⁻³ s⁻¹)

<i>n</i> = 1	2	3	4	5	6	7	
5.0	8.2	6.0	0.15	8.8	13 ^a	11 ^a	

^a U. Achatz et al. *Chem. Phys. Lett.* **2000**, *320*, 53

Reactivity shows little dependence for cluster size

Pt₄⁺ appears as an exception

2. Step: Activation of ammonia

 $Pt_nCH_2^+ + NH_3 \rightarrow [Pt_nCNH_3]^+ + H_2$

Rate constants (in 10^{-10} cm⁻³ s⁻¹)

<i>n</i> = 1	2	3	4	5	
1.6 ^a	9.7	9.6	17	12	

^a A side reaction leads to $CH_2NH_2^+ + PtH$.

Behavior similar to the monomer

Rates increase with cluster size

> More efficient C–N-coupling with clusters

BUT:

Labeling	$Pt_nCD_2^+ + NH_3 \rightarrow [Pt_nCNH_3]^+ + D_2$
CID	$[Pt_nCNH_3]^+ \rightarrow Pt_nC^+ + NH_3$

Ionic products $[Pt_nCNH_3]^+$ consitute carbide complexes of the type $CPt_n(NH_3)^+$, rather than $Pt_nC(H)NH_2^+$ or $Pt_n(CH_2NH)^+$

☞ No C−N-coupling

Negligible BMA-activity of Pt_n⁺-clusters

NB: Importance of labeling studies

Possible solution: combination of two metals

• PtAu⁺ instead of Pt₂⁺

AuCH₂⁺ rapidly reacts with NH₃, whereas methane is not activated at all by gaseous Au_n⁺ ions

(J. Am. Chem. Soc. 1999, 121, 10614)

 $PtAu^{+} + CH_{4} \rightarrow PtAuCH_{2}^{+} + H_{2}$

 $PtAuCH_2^+ + NH_3 \rightarrow [PtAuCNH_3]^+ + H_2$ (HD from $PtAuCD_2^+$)

 $[PtAuCNH_3]^+ \rightarrow [PtAuCNH]^+ + H_2$

C–N-coupling with a heterometallic cluster Correlation with Au-doped BMA catalysts

(J. Am. Chem. Soc. 2003, 125, 3676)

Further: Pt_n⁺, PtCu⁺, PtAg⁺, Pt_mAu_n⁺, PtRh⁺ Organometallics 2003, 22, 3809, Chem. Phys. Chem. 2003, 4, 1233, Angew. Chem. Int. Ed. 2004, 43, 121, Int. J. Mass Spectrom. 2004, 237, 19.

Exkursus: "Chemical laundry" of PtAu⁺

- Platinum: ¹⁹⁴Pt (33%), ¹⁹⁵Pt (34%), ¹⁹⁶Pt (25%), ¹⁹⁸Pt (7%)
- Gold: Pure element ¹⁹⁷Au (100%)

Laserdesorption auf Pt/Au target

Abundant $PtAu^+$ cluster is isobaric with Pt_2^+

Removal of Pt₂⁺ by reaction with O₂ followed by *rf*-pulse

 $\mathsf{Pt_2}^{\scriptscriptstyle +} + \mathsf{O_2} \ \rightarrow \ \mathsf{Pt}^{\scriptscriptstyle +} + \mathsf{PtO_2}$

☞ Isobaric overlaps are avoided, pure ¹⁹⁵Pt¹⁹⁷Au⁺

(J. Am. Chem. Soc. 2003, 125, 3676)

II. Partial oxidation of methane

Shilov systems

- Pt^{II}-salt, water, acid
- Attractive selectivity *e.g. CH*₃ > *CH*₂ *in propane*

Proposed mechanism

- radical-type abstraction?
- selectivity

• oxidative addition?

🦻 unlikely (solvent effects, Pd-analog)

$\sigma\text{-complex}$ followed by $\sigma\text{-bond}$ metathesis

P. E. M. Siegbahn, R. H. Crabtree J. Am. Chem. Soc. 1996, 118, 4442

Gas-phase studies of methane activation with Pt

- Many studies of Pt⁺ (Beauchamp, Schwarz, Bondybey, Armentrout)
- Some studies of Pt^{0/-} (Kaldor, Niedner-Schatteburg, Ervin)
- Reactivity of Pt_n⁺ clusters (Schwarz, Bondybey, Uggerud)
- Mixed Pt_nM_m⁺ clusters (Schwarz)
- Miscellaneous PtX^+ ions (X = CH₂, NH, O etc., Schwarz, Bondybey)

Methane activation frequently observed

But: Pt^I and Pt^{III} are rather uncommon oxidation states "normal": Pt⁰, Pt^{II}, Pt^{IV}, and Pt^{VI}

Problem: How to generate PtX^+ ions with formal Pt^{\parallel} ?

Good model might be PtCl⁺

Gas-phase experiment

desired: $Pt^+ + R-X \rightarrow PtX^+ + R^{\bullet}$

real: atom transfer associated with ET $Pt^+ + R-X \rightarrow PtX + R^+$

exception $Pt^+ + X_2 \rightarrow PtX^+ + X^{\bullet} X = CI, Br$ (not suited for reactivity)

Theory

DFT $PtX^+ + CH_4 \rightarrow PtCH_3^+ + HX$ (ok for X = CI, F) predicted *IEs* of neutral PtX much above 10 eV

$\ensuremath{\mathfrak{S}}$ No access to the ions of interest

New approach to ions of interest

Electrospray ionization of strongly acidic solutions

\$	conductivity of solution	(discharge via syringe)
9	breakdown of spray	(droplet model)
5	corrosion of capillary	(metal parts)

Often: "ESI does not work below pH = 3"

However, reality is the probe

Replacement of steel capillary by one of fused-silica

It shouldn't work, but it does 🙂

Likewise: Cu^{II} & Fe^{III} salts, HCI at pH = 0, even KMnO₄ and H₂O₂

Ion chemistry of H₂PtCl₆ in MeOH/H₂O upon ESI

```
Anions: PtCl<sub>6</sub><sup>2-</sup> dianion prevails
```

```
Cations Soft ionization [H_3PtCI_6(CH_3OH)_n]^+

\downarrow - CH_3OH

Increasing energy [H_3PtCI_6(CH_3OH)_3]^+

\downarrow - 3 HCI

[PtCI_3(CH_3OH)_3]^+

\downarrow - CH_3OH

[PtCI_3(CH_3OH)_2]^+

\downarrow

Hard ionization PtCI_n^+, Pt(OCH_3)_n^+, Pt(OCH)_n^+
```

Good to reasonable yields, MeOH required for stable spray, care for isotope patterns needed

Ion/molecule re	eactions	with	methane
-----------------	----------	------	---------

reaction	products	Xi	<i>k</i> _{rel}	$\phi_{\rm i}$
$Pt^+ + CH_4$	$PtCH_2^+ + H_2$	100	40	35%
$PtH^{+} + CH_{4}$	$PtCH_3^+ + H_2$	100	50	45%
$PtCHO^{+} + CH_{4}$	(H/D exchange)		< 1	
$PtCl^{+} + CH_{4}$	$PtCH_3^+ + HCI$	100	70	65%
$PtCl_2^+ + CH_4$	$CIPtCH_3^+ + HCI$	100	60	55%
$PtBr^{+} + CH_{4}$	$BrPtCH_2^+ + H_2$	15	100	000/
	$PtCH_3^+ + HBr$	85	100	90%
$PtCl_3^+ + CH_4$			< 1	

Reaction efficiency $\phi_{\rm I}$ derived from $k_{\rm abs}({\rm Pt}^+)_{\rm ICR} = 4.8 \cdot 10^{-10} \, {\rm cm}^3 \, {\rm s}^{-1}$

Isotope effects

reaction	products	KIE	
$Pt^+ + CH_4$	$PtCH_2^+ + H_2$	1.70 ± 0.04	ICR: 1.6 ± 0.1
$PtH^{+} + CH_{4}$	$PtCH_3^+ + H_2$	1.11 ± 0.05	
$PtCl^{+} + CH_{4}$	$PtCH_3^+ + HCI$	1.16 ± 0.04	
$PtCl_2^+ + CH_4$	$CIPtCH_3^+ + HCI$	1.38 ± 0.04	
$PtBr^{+} + CH_4$	$BrPtCH_2^+ + H_2$	1.25 ± 0.08	
	PtCH ₃ ⁺ + HBr	1.03 ± 0.03	

C-H bond activation appears rather facile (rates & KIEs)

Thermochemistry?

▶ P. B. Armentrout and coworkers J. Phys. Chem. A 2003, 107, 10303

 $D_0(Pt^+-Cl) = 58.8 \pm 3.5 \text{ kcal/mol}$ $D_0(ClPt^+-Cl) = 61.5 \pm 4.5 \text{ kcal/mol}$

NB. First bond weaker than the second ("prepared state")

 $PtCl^+ + D_2 \rightarrow PtD^+ + DCl \Delta H_r = -35 \text{ kcal/mol}$

 $PtCl^{+} + CH_4 \rightarrow PtCH_3^{+} + HCl \Delta H_r = - 2 \text{ kcal/mol}$

► Thermochemically, all bond activations are feasible

Carge rates and low KIEs due to thermochemical control

Transition-metal oxides

Central units in oxidases (P450, MMO etc.)

Gas phase: FeO^+ cation is a highly potent oxidant

Oxidation of alkanes:	$R-H \rightarrow R-OH$	(even CH ₄)
O-transfer to alkenes:	$C_2H_4 \rightarrow CH_3CHO$	(rearrangement to aldehyde)
Oxidation of arenes:	$Ar-H \rightarrow Ar-OH$	(arene oxide involved)
Robust substrates:	$C_6F_6\to C_6F_5O^{\bullet}$	(perfluoroalkanes are unreactive)
	(Reviews: An	ngew. Chem. 1995 , 107, 2126; Struct. Bond. 2000 , 97, 91)

> Mostly with change of spin along the reaction coordinate

Two-State Reactivity

(Acc. Chem. Res. 2000, 33, 139)

Example for a "real" gas-phase catalysis: Oxidations with PtO₂⁺

- PtO₂⁺ cation as highly efficient oxidant e.g. H₂, CO, CH₄, C₂H₄

© ACS, Washington, USA

Problem: Low selectivity of metal oxides

Example: Methane/PtO₂⁺

$$\begin{bmatrix} Pt, O_2 \end{bmatrix}^{+} + CH_4 = \begin{pmatrix} 0.10 \\ 0.12 \\ 0.12 \\ 0.03 \\ PtCHO^{+} + H_2O + H^{*} \\ 0.33 \\ PtCO^{+} + H_2O + H_2 \\ 0.04 \\ PtH_2O^{+} + CH_2O \\ 0.05 \\ PtO^{+} + CH_3OH \\ 0.15 \\ PtH_2^{+} + H_2O + CO \\ 0.15 \\ PtH_2^{+} + H_2O + CO \\ 0.15 \\ PtH_2^{+} + CH_4O_2^{"} \\ 0.06 \\ CH_2O^{+} + PtH_2O \end{bmatrix}$$

rightarrow Poor selectivity \rightarrow complete oxidation

Possible solution: Modulation of reactivity by ligands

Oxidation of the ligands requires "inverted" approach first: $M^+ + L \rightarrow M(L)^+$ then: $M(L)^+ + [O] \rightarrow (L)MO^+$

(Can. J. Chem. 1999, 77, 774)

However: Reactivity is lowered too much

Alternative approach (ligand needs to be resistant against oxidation)

(1,10-phenanthroline)CuO⁺

(J. Phys. Chem. B 2004, 108, 14407)

Do we really need a transition metal?

MgO⁺ cation activates methane efficiently

© Wiley-VCH, Weinheim, DE

Close analogy to Li/Mg/O in applied catalysis

Low-temperature activation of methane: It also works without a transition metal! D. Schröder, J. Roithová, *Angew. Chem. Int. Ed.* **2006**, *45*, 5705

III. Epoxidation of olefines

	C_2H_4	-Oxi	dation \rightarrow	c-C ₂ H ₄ O		(ethylene ox	kide, EO)	
Uses:	polym antifre food a	ers ezing dditiv	es					
Classic	al route):	NaCl _{aq} - 2 NaOH NaOCl -	-current→ I + Cl ₂ → + C ₂ H ₄ →	NaO NaO NaCl	H + ½ Cl₂ Cl + NaCl + ŀ + C₂H₄O	H₂O	
		79 79 79	electrici "salt loa chlorina	ty consum d" .ted waste,	ption , merc	sury		
		"D	ream rea	iction":	C ₂	$H_4 + \frac{1}{2} O_2 \rightarrow$	<i>c</i> -C ₂ H ₄ O	

Megaton process on silver contact

Atom-economic process High selectivity (no byproducts) Almost completely replaced CI-route

Remaining problems

- significant amount of total combustion
- 👎 heat removal
- safety issues

Recall: +1% product = -1% waste = +2% profit

Can gas-phase chemistry contribute?

Gas-phase model

1st task: Make it!

Electrospray ionization of aqueous $AgNO_3$ gives solvated ions $[Ag(H_2O)_n]^+$, $[Ag_2(NO_3)(H_2O)_n]^+$, $[Ag_3(NO_3)_2(H_2O)_n]^+$ etc.

♦ Reasonable yields of triatomic Ag₂O⁺

2nd task: React it!

Interaction of mass-selected ¹⁰⁷Ag₂¹⁶O⁺ with ethylene

Efficient oxygen-atom transfer

3rd task: Understand it!

Kinetic control of epoxidation

Result

Reactions of Ag_2O^+ generated via ESI combined with ab initio calculations provide a functional model for the surface reaction

"Triatomic model for megaton process"

Gas-phase Models for Catalysis: Alkane Activation and Olefin Epoxidation by the Triatomic Cation Ag₂O⁺

J. Roithová, D. Schröder, J. Am. Chem. Soc. 2007, 129, 15311

IV. Conclusions

- BMA activity of Pt⁺ ions
 - \bullet C–N-coupling only for the $\text{Pt}^{\scriptscriptstyle +}\text{-monomer}$ and the mixed $\text{PtAu}^{\scriptscriptstyle +}$ cluster
 - Impact in applied catalysis (PCT/EP2004/001516)
- CH₄ activation by Shilov-type Pt^{II} ions
 - Cationic mechanism in solution?
- No transition metal is required!
 - Methane activation by MgO⁺
- Epoxidation of ethylene on silver contacts
 - Triatomic model for a large-scale industrial process

M. Brönstrup, M. Diefenbach, K. Koszinowski, P. Milko K. P. De Jong (Utrecht), M. C. Holthausen (Marburg), J. Roithová (Prague), H. Schwarz (Berlin) ERC, GAAV, GAČR, TNA/EU

ERC Advanced Grant HORIZOMS

"Language barriers" in current chemistry

© ACS, Washington, USA

Linkage of gas phase and "real" chemistry

EPR: electron paramagnetic resonance. NMR: nuclear magnetic resonance. ESI: electrospray ionization. MS: mass spectrometry

