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Atomistic models of megaton processes 
 

Or: Using mass spectrometers as chemical laboratories 
 

 

 

 
 

 

   ⇒ Reactivity concepts for model systems 
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Challenges in selective oxidation  
 

 
 ) Methane oxidation  CH4 + ½ O2  →  CH3OH 
 

  Well-developed, stepwise process 
 

  CH4 → CO/H2 → CH3OH 
 

  Only economic in large scale 
 
 
 
 What about "small" sources? 
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 ) Methane coupling   2 CH4 + O2  →  C2H4 + 2 H2O 
 

 
© Wiley-VCH, Weinheim, DE 

 
 
 ) Epoxidation    C2H4 + ½ O2  →  c-C2H4O 
               "atom economic" 
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Key objectives 
 

      )   Combustion to be avoided!  
 
 
   • Principles of C-H bond activation  ⇒ basic understanding 
 
   • Follow-up reactions      ⇒ prevention of overoxidation 
 
   • Reactivity/selectivity dilemma   ⇒ practical realization 
 
   • Spin- and stoichiometry problems  ⇒ re-oxidation with O2 
 
 
 
 
Selective Activation of Alkanes by Gas-Phase Metal Ions 
J. Roithová, D. Schröder, Chem. Rev. 2010, 110, 1170 
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Overview 
 
 
 

 ⇒    I. Principles (Example: BMA process) 
   Ion/molecule reactions in FTICR-MS 
   Kinetics & thermochemistry 
   ab initio studies 
 
 

 ⇒   II. Partial oxidation of methane 
   Mononuclear systems 
   Metal-oxide clusters 
 
 

 ⇒  III. Epoxidation of olefins 
   Conceptual problem 
   Classical methods and uses of epoxides 
   Contact process 
 
 

 ⇒ IV. Conclusions 
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I. Measuring procedure - Example: BMA process 
 
BMA: Blausäure aus Methan und Ammoniak [DEGUSSA- and ANDRUSSOW processes] 
 

CH4  +  NH3   →   HCN  +  3 H2  (endothermic) 
 
Fourier-transform ion cyclotron-resonance (FTICR) mass spectrometry 
 i.e. storage of ions in electromagnetic fields 
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 Procedure 
 

 1. Ion generation        here: LD/LI of platinum 
 

 2. Transfer to the ICR cell and isolation   here: 195Pt+ 
 

 3. Thermalization        here: collisions with argon 
 

 4. Gas pulse for the generation of reactants   here: Pt+ + CH4 → PtCH2
+ + H2 

 

 5. Isolation of the reactant ion     here: 195PtCH2
+ 

 

 6. Reaction with a neutral gas     here: ammonia 
 

 7. Detection and data processing    here: mass spectra 
 

 

    ¬ Intensitities as a function of reaction time  )  Kinetics
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 A. Reaction kinetics 
 
 Primary reactions in the Pt+/CH4/NH3 system 
 

 Pt+  +  CH4    →   PtCH2
+  +  H2  kCH4 = 8.2 • 10-10 cm3 s-1  

 

 Pt+  +  NH3    →   Pt(NH3)+   kNH3 = 5.0 • 10-13 cm3 s-1  
 
 

  ¬ Pt+ is selective for methane, S > 99.9% (in UHV) 

 
 

 PtCH2
+ + CH4 →  PtC2H4

+ + H2  kCH4 = 0.9 • 10-10 cm3 s-1  
 

 PtCH2
+ + NH3 →  PtCH + NH4

+  kNH3 = 0.3 • 10-10 cm3 s-1  
     →  PtH + CH2NH2

+ kNH3 = 4.3 • 10-10 cm3 s-1  
     →  PtCHNH2

+ + H2 kNH3 = 1.6 • 10-10 cm3 s-1  
 
 

  ¬ PtCH2
+ is selective for ammonia, SC-N > 80%   (1:1 mixture) 

 

 (Angew. Chem. 1994, 106, 1232 & Angew. Chem. 1998, 110, 858) 
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 B. Subsequent reactions 
 
 Collision-induced dissociation: Dehydrogenation 

 PtCHNH2
+  +  E  →  PtCNH+ + H2   then: PtCNH+  +  E  →  Pt+ + HCN  

 

    similarly: PtCDNH2
+ → PtCNH+ + HD 

 
 Formation of aminocarbene complexes 

 PtCH2
+ + NH3  →  PtCHNH2

+ + H2 
 PtCHNH2

+ +  NH3 →  PtC(NH2)2
+ + H2  

 

    similarly: PtCD2
+ → → PtC(NH2)2

+   
 
 Formation of immonium ions 

 PtCH2
+ + NH3  →  PtH + CH2NH2

+  
 CH2NH2

+ +  NH3 →  NH4
+ + CH2NH   

 

 cf. PA(CH2NH) = 203.8 kcal/mol vs. PA(NH3) = 204.0 kcal/mol 
 

    similarly: PtCD2
+ → CD2NH2

+ → NH4
+
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 C. Comparison of different metals 
 

) Model reaction: MCH2
+  +  NH3  →  Products  

 

 kr/kc NH4
+ CH2NH2

+ CH3NH2 MC(H)NH2
+ φBMA 

FeCH2
+ 0.0     0%

CoCH2
+ 0.0 

no reaction 
no reaction     0%

RhCH2
+ 0.1   75   25     0%

TaCH2
+    0.5a,b     5   65   20%

WCH2
+   0.1b    100   10%

OsCH2
+ 0.2 45     55   20%

IrCH2
+ 0.4 60     40   40%

PtCH2
+ 0.3   5 70    25 100%

AuCH2
+ 0.6  100       0% 

              a In addition 30% metathesis to TaNH+ + CH4  b Pronounced oxide formation with background water 
 
) Kinetic control of C–N-coupling 
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 D. Ab initio studies 
 

) Density functional theory (B3LYP) 
 

  © Wiley-VCH, Weinheim, DE 
 
) Formation of aminocarbene complexes 

(Angew. Chem. 1998, 110, 858) 
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 Result: Model for surface reaction 
 

 
© ACS, Washington, USA 

 

) Two separate pathways to HCN  (proof in real BMA catalysis in 2004) 
 ANDRUSSOW: additional combustion of methane 

(J. Am. Chem. Soc. 1999, 121, 10614) 
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 Next step: Reactivity of cluster ions  
 
 Cluster source: Laservaporization according to Smalley  
 

 
 

   ♦ Cooling and aggregation in He-puls 

   ♦ Fine tuning via pulse sequence, He-pressure, laser power etc.  
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 1. Step: Activation of methane  
 
 Ptn

+  +  CH4   →   PtnCH2
+  +  H2 

 
        Rate constants (in 10-10 cm-3 s-1) 
 

n =   1   2   3   4   5   6   7 

 5.0 8.2 6.0 0.15   8.8 13a 11a 

 a U. Achatz et al. Chem. Phys. Lett. 2000, 320, 53   

 
) Reactivity shows little dependence for cluster size 
 
   Pt4

+ appears as an exception  
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 2. Step: Activation of ammonia  
 
 PtnCH2

+  +  NH3   →   [PtnCNH3]
+  +  H2 

 
       Rate constants (in 10-10 cm-3 s-1) 
 

n =  1  2  3  4  5 

 1.6a 9.7 9.6 17 12 

 a A side reaction leads to CH2NH2
+ + PtH.  

 
) Behavior similar to the monomer  
 

 Rates increase with cluster size 
 
 

  ¾ More efficient C–N-coupling with clusters  
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 BUT:  
  

  Labeling  PtnCD2
+ + NH3 →  [PtnCNH3]

+ + D2 
 

  CID    [PtnCNH3]
+    →   PtnC

+ + NH3  
 

 
 Ionic products [PtnCNH3]

+ consitute carbide complexes of the type CPtn(NH3)
+,  

 

rather than PtnC(H)NH2
+ or Ptn(CH2NH)+  

 
) No C–N-coupling 

 

Negligible BMA-activity of Ptn
+-clusters  

 
NB: Importance of labeling studies 
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 Possible solution: combination of two metals  
 
 • PtAu+ instead of Pt2

+ 
 

AuCH2
+ rapidly reacts with NH3, whereas methane is not activated at all 

by gaseous Aun
+ ions 

(J. Am. Chem. Soc. 1999, 121, 10614) 
 

PtAu+   +   CH4     →    PtAuCH2
+    +  H2  

 
PtAuCH2

+ + NH3  →   [PtAuCNH3]
+ +  H2  (HD from PtAuCD2

+) 
 
[PtAuCNH3]

+        →   [PtAuCNH]+  +  H2  
  

) C–N-coupling with a heterometallic cluster  
  Correlation with Au-doped BMA catalysts 

(J. Am. Chem. Soc. 2003, 125, 3676) 
 

Further: Ptn
+, PtCu+, PtAg+, PtmAun

+, PtRh+  
Organometallics 2003, 22, 3809, Chem. Phys. Chem. 2003, 4, 1233, Angew. Chem. Int. Ed. 2004, 43, 121, Int. J. Mass Spectrom. 2004, 237, 19.
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 Exkursus: "Chemical laundry" of PtAu+  
 

 • Platinum: 194Pt (33%), 195Pt (34%), 196Pt (25%), 198Pt (7%) 
 • Gold:  Pure element 197Au (100%) 
 

 Laserdesorption auf Pt/Au target 
 

  Abundant PtAu+ cluster is isobaric with Pt2
+ 

 

  Removal of Pt2
+ by reaction with O2 followed by rf-pulse 

 

Pt2
+ + O2  →  Pt+ + PtO2  

 
 
 
 
 
 
 
 
 
 
 
 

) Isobaric overlaps are avoided, pure 195Pt197Au+  
 (J. Am. Chem. Soc. 2003, 125, 3676) 

Cc
195 197 +Pt Au

m z/  =  392m z/  =  392

 PtAu  and Au+
2
+

Cb
m z/  =  392

Pt , PtAu , and Au2
+ +

2
+

Ca

390 390 390400 400400
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II. Partial oxidation of methane 
 

  Shilov systems  
 

  • PtII-salt, water, acid  
 

  • Attractive selectivity    e.g. CH3 > CH2 in propane 
 
 Proposed mechanism  

  • radical-type abstraction?   ' selectivity 
 

  • oxidative addition?   ' unlikely (solvent effects, Pd-analog) 
 
 

 σ-complex followed by σ-bond metathesis 
 

            

ΔG≠ = 20 kcal/mol

 
 

P. E. M. Siegbahn, R. H. Crabtree J. Am. Chem. Soc. 1996, 118, 4442 
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Gas-phase studies of methane activation with Pt  
 
  • Many studies of Pt+    (Beauchamp, Schwarz, Bondybey, Armentrout)  
 

  • Some studies of Pt0/−    (Kaldor, Niedner-Schatteburg, Ervin) 
 

  • Reactivity of Ptn
+ clusters  (Schwarz, Bondybey, Uggerud)  

 

  • Mixed PtnMm
+ clusters  (Schwarz)  

 

  • Miscellaneous PtX+ ions  (X = CH2, NH, O etc., Schwarz, Bondybey) 
 
 

 Methane activation frequently observed  
 
 

   But: PtI and PtIII are rather uncommon oxidation states 
 

   "normal": Pt0, PtII, PtIV, and PtVI 
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Problem: How to generate PtX+ ions with formal PtII? 
 

Good model might be PtCl+  
 
Gas-phase experiment 

 

  desired: Pt+  +  R−X   →   PtX+  +  R• 
 

  real:  atom transfer associated with ET 
     Pt+  +  R−X   →   PtX  +  R+ 

 

  exception Pt+  +  X2   →   PtX+  +  X•   X = Cl, Br (not suited for reactivity) 
 

 

Theory 
 

  DFT  PtX+  +  CH4   →   PtCH3
+  +  HX  (ok for X = Cl, F) 

   predicted IEs of neutral PtX much above 10 eV 
 
 
 

  / No access to the ions of interest  
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 New approach to ions of interest 
 

Electrospray ionization of strongly acidic solutions  
 

   '  conductivity of solution   (discharge via syringe) 
   '  breakdown of spray    (droplet model) 
   '  corrosion of capillary    (metal parts) 
 

Often: "ESI does not work below pH = 3" 
 
 
However, reality is the probe 

 

  ) Replacement of steel capillary by one of fused-silica  
 

   It shouldn't work, but it does ☺ 
 
Likewise: CuII & FeIII salts, HCl at pH = 0, even KMnO4 and H2O2   
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 Ion chemistry of H2PtCl6 in MeOH/H2O upon ESI  
 

 Anions: PtCl6
2− dianion prevails  

 

 Cations Soft ionization  [H3PtCl6(CH3OH)n]
+ 

           ↓ - CH3OH 
    Increasing energy [H3PtCl6(CH3OH)3]

+ 
           ↓ - 3 HCl  
         [PtCl3(CH3OH)3]

+ 
           ↓ - CH3OH  
         [PtCl3(CH3OH)2]

+ 
           ↓  
    Hard ionization  PtCln

+, Pt(OCH3)n
+, Pt(OCH)n

+ 
 

    Very hard ESI  Pt+, PtH+, PtCH+ 
 
 

 Good to reasonable yields, MeOH required for stable spray,  
 care for isotope patterns needed 
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 Ion/molecule reactions with methane  
 

 

reaction products xi krel φi 

Pt+ + CH4 PtCH2
+ + H2 100   40   35% 

PtH+ + CH4 PtCH3
+ + H2 100   50   45% 

PtCHO+ + CH4 (H/D exchange)    < 1  

PtCl+ + CH4 PtCH3
+ + HCl 100   70   65% 

PtCl2+ + CH4 ClPtCH3
+ + HCl 100   60   55% 

PtBr+ + CH4 BrPtCH2
+ + H2   15 

 PtCH3
+ + HBr   85 

 

100 

 

  90% 

PtCl3+ + CH4     < 1  
 

 Reaction efficiency φi derived from kabs(Pt+)ICR = 4.8 • 10-10 cm3 s-1 
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 Isotope effects  
 
 

reaction products KIE  

Pt+ + CH4 PtCH2
+ + H2 1.70 ± 0.04 ICR: 1.6 ± 0.1 

PtH+ + CH4 PtCH3
+ + H2 1.11 ± 0.05  

PtCl+ + CH4 PtCH3
+ + HCl 1.16 ± 0.04  

PtCl2+ + CH4 ClPtCH3
+ + HCl 1.38 ± 0.04  

PtBr+ + CH4 BrPtCH2
+ + H2 1.25 ± 0.08  

 PtCH3
+ + HBr 1.03 ± 0.03  

 
 
 

  ) C−H bond activation appears rather facile (rates & KIEs)  
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 Thermochemistry?  
 

 ► P. B. Armentrout and coworkers J. Phys. Chem. A 2003, 107, 10303 
 
 

   D0(Pt+-Cl)      =   58.8 ± 3.5 kcal/mol  
 

   D0(ClPt+-Cl)   =   61.5 ± 4.5 kcal/mol  
 
 NB. First bond weaker than the second  ("prepared state")  
 
  PtCl+ + D2      →   PtD+      +  DCl    ΔHr = - 35 kcal/mol  
 

  PtCl+ + CH4   →   PtCH3
+  +  HCl    ΔHr = -   2 kcal/mol 

 
 

 ► Thermochemically, all bond activations are feasible 
 
 

  ) Large rates and low KIEs due to thermochemical control  
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  Transition-metal oxides  
 

  ) Central units in oxidases (P450, MMO etc.) 
 
Gas phase: FeO+ cation is a highly potent oxidant 
 

 Oxidation of alkanes:  R–H → R–OH  (even CH4) 
 

 O-transfer to alkenes:  C2H4 → CH3CHO  (rearrangement to aldehyde) 
 

 Oxidation of arenes:  Ar–H → Ar–OH  (arene oxide involved)  
 

 Robust substrates:  C6F6 → C6F5O
•   (perfluoroalkanes are unreactive) 

 

 (Reviews: Angew. Chem. 1995, 107, 2126; Struct. Bond. 2000, 97, 91) 
 
 ¾ Mostly with change of spin along the reaction coordinate 
 

  Two-State Reactivity  
(Acc. Chem. Res. 2000, 33, 139) 
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 Example for a "real" gas-phase catalysis: Oxidations with PtO2
+  

 

    ► PtO2
+ cation as highly efficient oxidant 

  e.g. H2, CO, CH4, C2H4 
 

 ¬ "Real" gas-phase catalysis, TON limited by impurities 

   
(J. Am. Chem. Soc. 2001, 123, 142)

 
      © ACS, Washington, USA 
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 Problem: Low selectivity of metal oxides  
 

 
   Example: Methane/PtO2

+ 

 
 
 
      )  Poor selectivity  → complete oxidation 
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Possible solution: Modulation of reactivity by ligands 
 
 

 Oxidation of the ligands requires "inverted" approach  
  first:   M+ + L  →  M(L)+  then:   M(L)+ + [O]  →  (L)MO+ 

 

    ¬   (arene)FeO+ epoxidizes olefines and permits selective C–H activations 
      (e.g. dealkylation of N,N-dimethylaniline)  

(Can. J. Chem. 1999, 77, 774) 
 
 

   However: Reactivity is lowered too much 
 
 
 
 

  ) Alternative approach (ligand needs to be resistant against oxidation) 
 

 
1.74

1.43

1.33
1.36

1.40

1.38
1.41

1.41

1.36

1.43

2.00

  

(1,10-phenanthroline)CuO+

 
(J. Phys. Chem. B 2004, 108, 14407) 
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 Do we really need a transition metal?  
 

 MgO+ cation activates methane efficiently  
 

 
© Wiley-VCH, Weinheim, DE 
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How does it work? 

 
© Wiley-VCH, Weinheim, DE 

 

Close analogy to Li/Mg/O in applied catalysis  
 

Low-temperature activation of methane: It also works without a transition metal! 
D. Schröder, J. Roithová, Angew. Chem. Int. Ed. 2006, 45, 5705 
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III. Epoxidation of olefines 
 

  C2H4   −Oxidation→   c-C2H4O   (ethylene oxide, EO) 
 

Uses:  polymers 
  antifreezing 
  food additives 

 

 
Classical route:  NaClaq −current→  NaOH + ½ Cl2 
     2 NaOH + Cl2  →  NaOCl + NaCl + H2O 
     NaOCl + C2H4 →  NaCl + C2H4O 
 

      '  electricity consumption 
      '  "salt load" 
      '  chlorinated waste, mercury 
 
 

"Dream reaction":  C2H4 + ½ O2 → c-C2H4O 
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 Megaton process on silver contact  
 
 Atom-economic process  
 

 High selectivity (no byproducts) 
 

 Almost completely replaced Cl-route  
 

 
Remaining problems 
 

     '  significant amount of total combustion 
     '  heat removal 
     '  safety issues 
 

Recall: +1% product = -1% waste = +2% profit 
 

Can gas-phase chemistry contribute? 
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Gas-phase model 
 
 1st task: Make it! 
 

 Electrospray ionization of aqueous AgNO3 gives solvated ions 
 

  [Ag(H2O)n]
+, [Ag2(NO3)(H2O)n]

+, [Ag3(NO3)2(H2O)n]
+ etc.  

 

 
© ACS, Washington, USA 

& Reasonable yields of triatomic Ag2O
+ 
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 2nd task: React it! 
 

 Interaction of mass-selected 107Ag2
16O+ with ethylene 

 

 
 
 
Two major channels: 
 

Ag2O+ + C2H4 →  Ag2
+ + C2H4O 

   → Ag(C2H4O)+ + Ag 
 

kr = 4.4 • 10-10 cm3 s-1, φ = 45 % 
 

 

& Efficient oxygen-atom transfer 
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 3rd task: Understand it! 
 

 
© ACS, Washington, USA 

& Kinetic control of epoxidation 
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Result 

Reactions of Ag2O
+ generated via ESI 

combined with ab initio calculations provide 

a functional model for the surface reaction 

 

"Triatomic model for megaton process" 
 

 
© ACS, Washington, USA 

 
Gas-phase Models for Catalysis: Alkane Activation and Olefin Epoxidation by the 
Triatomic Cation Ag2O+ 
J. Roithová, D. Schröder, J. Am. Chem. Soc. 2007, 129, 15311
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IV. Conclusions 
 
 • BMA activity of Ptn

+ ions  
 

  • C–N-coupling only for the Pt+-monomer and the mixed PtAu+ cluster 
 

  • Impact in applied catalysis (PCT/EP2004/001516) 
 
 • CH4 activation by Shilov-type PtII ions 
 

  • Cationic mechanism in solution? 
 

 • No transition metal is required!  
 

  • Methane activation by MgO+ 
 
 • Epoxidation of ethylene on silver contacts 
 

  • Triatomic model for a large-scale industrial process  
 
M. Brönstrup, M. Diefenbach, K. Koszinowski, P. Milko 
K. P. De Jong (Utrecht), M. C. Holthausen (Marburg), J. Roithová (Prague), H. Schwarz (Berlin) 
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Linkage of gas phase and "real" chemistry 

 
EPR: electron paramagnetic resonance. NMR: nuclear magnetic resonance. ESI: electrospray ionization. MS: mass spectrometry 

 
 

 
© ACS, Washington, USA 


